Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
نویسندگان
چکیده
Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017) are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG) wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ { gμν } and its conjugate momentum, referred to as (canonical) g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ, which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ { gμν } and its quantum conjugate momentum operator.
منابع مشابه
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory
A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP) approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravi...
متن کاملExploring the implications of the laws and principles of quantum physics in the field of talent (quantum theory of talent)
The issue of talent-discovering is one of the most important issues in the field of education and research that has always been a concern for educational systems. Studying the issues of identifying and guiding talented students can illuminate a large part of the activities of the executors and practitioners in order to accomplish their mission effectively. On the other hand, quantum physics has...
متن کاملΚ-deformed Covariant Phase Space and Quantum-gravity Uncertainty Relations
We describe the deformed covariant phase space corresponding to the so-called κ-deformation of D = 4 relativistic symmetries, with quantum “time” coordinate and Heisenberg algebra obtained according to the Heisenberg double construction. The associated modified uncertainty relations are analyzed, and in particular it is shown that these relations are consistent with independent estimates of qua...
متن کاملImplication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کاملWave Equations for Discrete Quantum Gravity
This article is based on the covariant causal set (c-causet) approach to discrete quantum gravity. A c-causet x is a finite partially ordered set that has a unique labeling of its vertices. A rate of change on x is described by a covariant difference operator and this operator acting on a wave function forms the left side of the wave equation. The right side is given by an energy term acting on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017